Vous êtes maintenant dans la zone de contenu principale
Marc Arsenault

Marc Arsenault

Professeur(e) titulaire, École de génie et d'informatique Bh
École de génie et d'informatique Bharti
Sciences, génie et architecture

Biographie

Marc Arsenault s'est joint à l'École de génie et de sciences informatiques de l'Université Laurentienne en 2013.  Auparavant,  il avait fait parti du corps professoral du département de génie mécanique et de génie aérospatial du Collège militaire royal du Canada.  Originaire de l'Île-du-Prince-Édouard, il a obtenu un baccalauréat et une maîtrise en sciences appliquées (génie mécanique) de l'Université de Moncton (Moncton, N.-B.).  Il a par la suite complété ses études de doctorat en génie mécanique à l'Université Laval (Québec, QC) où il développa une expertise dans le domaine de la mécanique des robots.  Marc Arsenault est membre de l'Association des ingénieurs et des géoscientifiques du Nouveau-Brunswick (AIGNB).

Éducation

  • 2006, Ph.D. (génie mécanique)
    Université Laval, Québec, Québec, Canada
  • 2003, M.A.Sc. (génie mécanique)
    Université de Moncton, Moncton, Nouveau-Brunswick, Canada
  • 2002, B.A.Sc. (génie mécanique - COOP)
    Université de Moncton, Moncton, Nouveau-Brunswick, Canada

Nomination professorale

  • 2013 au présent, Professeur titulaire, École de génie et de sciences informatiques, Université Laurentienne, Sudbury, Ontario, Canada
  • 2013 à 2023, Professeur agrégé, École de génie et de sciences informatiques, Université Laurentienne, Sudbury, Ontario, Canada
  • 2010 à 2013, Professeur agrégé, Département de génie mécanique et génie aérospatial, Collège militaire royal du Canada, Kingston, Ontario, Canada
  • 2006 à 2010, Professeur adjoint, Département de génie mécanique et génie aérospatial, Collège militaire royal du Canada, Kingston, Ontario, Canada

Recherche

Les intérêts de recherche de Marc Arsenault portent surtout sur la mécanique des robots.  Parmi les récentes contributions faites par son groupe de recherche dans ce domaine, la plupart ont visé le développement de nouveaux robots inspirés par l'utilisation de câbles.  L'étude des robots à câbles est largement motivée par la possibilité de réduire l'inertie des parties mobiles d'un robot, permettant ainsi l'exécution de mouvements rapides à grandes accélérations.  De plus, les robots à câbles peuvent être construits à de grandes échelles et bénéficient souvent d'espaces atteignables relativement grands.  Plusieurs nouveaux robots furent développés et analysés pour évaluer leur performance vis-à-vis l'espace atteignable, la raideur et les caractéristiques dynamiques.  Parmi les autres projets de recherche complétés, on retrouve le développement d'un mécanisme pour simuler le comportement charge-déformation de la colonne cervicale humaine ainsi que l'optimisation de la géométrie des robots parallèles en fonction de leur espace atteignable et de leur raideur.

Prix

  • Prix des meilleurs évaluateurs d'articles, ASME Journal of Mechanisms and Robotics, 2021.
  • Prix du meilleur article, Transactions de la Société canadienne de génie mécanique, 2007.

Enseignement

ENGR-2506: Dynamics
ENGR-3516: Vibrations and Dynamic Systems
ENGR-3546: System Modeling and Simulation
ENGR-3556: Electromechanical Actuators
ENGR-5136: Engineering Design Optimization
ENGR-5557: Advanced Robot Mechanics

Publications

Articles publiés dans des revues scientifiques avec comité de lecture:

  1. Ethan McDonald, Marc Arsenault, Steven Beites (2023).  Design of a 3-DoF Cable-Driven Parallel Robot for
    Automated Construction Based on Workspace and Kinematic Sensitivity.  ASME Journal of Mechanisms and Robotics, https://doi.org/10.1115/1.4056709
  2. Marc Arsenault, Roger Boudreau, Scott Nokleby (2022).  Determination of the available wrench set of a 3-RPRR kinematically-redundant planar parallel manipulator.  Mechanism and Machine Theory, 169, 18 pages, https://doi.org/10.1016/j.mechmachtheory.2021.104628
  3. Marc Arsenault, Roger Boudreau, Scott Nokleby (2021).  Computation of the Available Force Set of a 3-RPRR Kinematically-Redundant Planar Parallel Manipulator.  ASME Journal of Mechanisms and Robotics, 13(6), 12 pages, https://doi.org/10.1115/1.4051062
  4. Katie Goggins, Delphine Chadefaux, Marco Tarabini, Marc Arsenault, W. Brent Lievers and Tammy Eger (2021).  Four degree-of-freedom lumped parameter model of the foot-ankle system exposed to vertical vibration from 10 to 60 Hz with varying centre of pressure conditions.  Ergonomics, https://doi.org/10.1080/00140139.2021.1891298
  5. Marc Arsenault (2020).  Workspace-based design of equivalent compression spring legs for a 3-DoF translational tensegrity robot.  ASME Journal of Mechanisms and Robotics, 12(4): 041004 (8 pages) https://doi.org/10.1115/1.4045724
  6. Marc Arsenault, Louis-Francis Tremblay and Meysar Zeinali (2020).  Optimization of trajectory durations based on flow rate scaling for a 4-DoF semi-automated hydraulic rockbreaker.  Mechanism and Machine Theory, 143, https://doi.org/10.1016/j.mechmachtheory.2019.103632
  7. Louis-Francis Tremblay, Marc Arsenault and Meysar Zeinali (2020).  Development of a trajectory planning algorithm for a 4-DoF rockbreaker based on hydraulic flow rate limits.  Transactions of the CSME, 44(4): 501-510, https://doi.org/10.1139/tcsme-2019-0173
  8. Marc Arsenault (2018).  Design of variable radius drum mechanisms.  Mechanism and Machine Theory, 129: 175-190, https://doi.org/10.1016/j.mechmachtheory.2018.07.014
  9. Louis-Francis Tremblay, Marc Arsenault and Meysar Zeinali (2018).  Simplification of the dynamic model of a hydraulic rockbreaker for implementation in a model-based control scheme.  Transactions of the CSME, 41(1): 38-48, https://doi.org/10.1139/tcsme-2017-0006
  10. Marc Arsenault (2013).  Workspace and stiffness analysis of a three-degree-of-freedom spatial cable suspended parallel mechanism while considering cable mass.  Mechanism and Machine Theory, 66: 1-13, https://doi.org/10.1016/j.mechmachtheory.2013.03.003
  11. Sam Chen, Marc Arsenault and Kodjo Moglo (2012).  Design of a mechanism to simulate the quasi-static moment-deflection behaviour of the osteoligamentous structure of the C3-C4 cervical spine segment in the flexion-extension and lateral bending directions.  Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(11): 817-826, https://doi.org/10.1177/0954411912454105
  12. Sam Chen and Marc Arsenault (2012).  Analytical computation of the actuator and Cartesian workspace boundaries for a planar 2-degree-of-freedom translational tensegrity mechanism. ASME Journal of Mechanisms and Robotics, 4(1): 011010-1-011010-8, https://doi.org/10.1115/1.4005335
  13. Chris Mohr and Marc Arsenault (2011).  Kinematic analysis of a translational 3-DoF tensegrity mechanism.  Transactions of the CSME, 35(4): 573-584, https://doi.org/10.1139/tcsme-2011-0035
  14. Marc Arsenault (2011).  Stiffness analysis of a 2-DoF planar tensegrity mechanism.  ASME Journal of Mechanisms and Robotics, 3(2): 021011-1-021011-8, https://doi.org/10.1115/1.4003849
  15. Marc Arsenault (2010).  Determination of the analytical workspace boundaries of a novel 2-DoF planar tensegrity mechanism.  Transactions of the CSME, 34(1): 75-91, https://doi.org/10.1139/tcsme-2010-0005
  16. Marc Arsenault and Clément M. Gosselin (2009).  Kinematic and static analysis of a 3-PUPS spatial tensegrity mechanism.  Mechanism and Machine Theory, 44(1): 162-179, https://doi.org/10.1016/j.mechmachtheory.2008.02.005
  17. Marc Arsenault and Clément M. Gosselin (2008).  Kinematic and static analysis of a 3-DoF spatial modular tensegrity mechanism.  International Journal of Robotics Research, 27(8): 951-966, https://doi.org/10.1177/0278364908091152
  18. Marc Arsenault and Clément M. Gosselin (2007).  Static balancing of tensegrity mechanisms.  ASME Journal of Mechanical Design, 129(3): 295-300, https://doi.org/10.1115/1.2406100
  19. Marc Arsenault and Clément M. Gosselin (2006).  Kinematic, static and dynamic analysis of a spatial three-degree-of-freedom tensegrity mechanism.  ASME Journal of Mechanical Design, 128(5): 1061-1069, https://doi.org/10.1115/1.2218881
  20. Marc Arsenault and Clément M. Gosselin (2006).  Kinematic, static and dynamic analysis of a planar 2-DoF tensegrity mechanism.  Mechanism and Machine Theory, 41(9): 1072-1089, https://doi.org/10.1016/j.mechmachtheory.2005.10.014
  21. Marc Arsenault and Roger Boudreau (2006).  Synthesis of planar parallel mechanisms while considering workspace, dexterity, stiffness and singularity avoidance.  ASME Journal of Mechanical Design, 128(1): 69-78, https://doi.org/10.1115/1.2121747
  22. Marc Arsenault and Clément M. Gosselin (2005).  Dynamic simulation of a spatial 3-DoF tensegrity mechanism.  Transactions of the CSME, 29(4): 491-505, https://doi.org/10.1139/tcsme-2005-0030
  23. Marc Arsenault and Clément M. Gosselin (2005).  Kinematic, static and dynamic analysis of a planar 1-DoF tensegrity mechanism.  ASME Journal of Mechanical Design, 127(6): 1152-1160, https://doi.org/10.1016/j.mechmachtheory.2005.10.014
  24. Marc Arsenault and Roger Boudreau (2004).  The synthesis of three-degree-of-freedom parallel mechanisms with revolute joints (3-RRR) for an optimal singularity-free workspace.  Journal of Robotic Systems, 21(5): 259-274, https://doi.org/10.1002/rob.20013

Articles publiés dans des comptes rendus de conférences avec comité de lecture:

  1. McDonald E., Beites S., Arsenault M. (2022) CDPR Studio: A Parametric Design Tool for Simulating Cable-Suspended Parallel Robots. In: Gerber D., Pantazis E., Bogosian B., Nahmad A., Miltiadis C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_22
  2. K. A. Goggins, D. Chadefaux, M. Tarabini, W. B. Lievers, M. Arsenault and T. R.
    Eger. (2021). Modeling of the foot-ankle system in natural standing position using a four-degree-of-freedom
    lumped parameter model. 8th American Conference on Human Vibration.
  3. M. Arsenault (2019).  Computation of the interference-free wrench feasible workspace of a 3-DoF translational tensegrity robot.  Proceedings of the 15th IFToMM World Congress / Fourth International Conference on Cable-Driven Parallel Robots, Krakow, Poland.
  4. L.-F. Tremblay, M. Arsenault and M. Zeinali (2019).  Development of a trajectory planning algorithm for a 4-DoF rockbreaker based on hydraulic flowrate limits.  Proceedings of the 2019 CCToMM M3 Symposium, Montréal, QC.
  5. L.-F. Tremblay, M. Arsenault and M. Zeinali (2017).  Simplification of the dynamic model of a hydraulic rockbreaker for the purpose of implementation in a model-based control scheme.  Proceedings of the 2017 CCToMM M3 Symposium, Montréal, QC.
  6. C. Mohr and M. Arsenault (2016). Design and fabrication of a functional prototype for a 3-DoF translational tensegrity robot.  Proceedings of the CSME International Congress, Kelowna, BC.
  7. Marc Arsenault (2012).  Stiffness analysis of a planar 2-DoF cable-suspended mechanism while considering cable mass.  Proceedings of the First International Conference on Cable-Driven Parallel Robots, Stuttgart, Germany, pp. 405-421.
  8. Chris Mohr and Marc Arsenault (2011).  Kinematic analysis of a translational 3-DoF tensegrity mechanism.  Proceedings of the 2011 CCToMM Symposium on Mechanisms, Machines, and Mechatronics (2011 CCToMM M3), Montréal, Québec, Canada.
  9. Sam Chen and Marc Arsenault (2010).  Workspace computation and analysis of a planar 2-DoF translational tensegrity mechanism.  Proceedings of the 2010 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), Montréal, Québec, Canada.
  10. Marc Arsenault (2010).  Optimization of the prestress stable wrench closure workspace of planar parallel three-degree-of-freedom cable-driven mechanisms with four cables.  Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA.
  11. Marc Arsenault (2008).  Stiffness analysis of a 2-DoF planar tensegrity mechanism.  Proceedings of the 2008 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), New York, New York, USA.
  12. Marc Arsenault (2008).  Kinematic analysis of a novel 2-DoF planar tensegrity mechanism.  Proceedings of the 2008 CSME Forum, Ottawa, Ontario, Canada.
  13. Marc Arsenault and Clément M. Gosselin (2006).  Kinematic and static analysis of a planar modular 2-DoF tensegrity mechanism.  Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA.
  14. Marc Arsenault and Clément M. Gosselin (2005).  Static balancing of tensegrity mechanisms.  Proceedings of the 2005 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2005), Long Beach, California, USA.
  15. Marc Arsenault and Clément M. Gosselin (2005).  Dynamic simulation of a spatial 3-DoF tensegrity mechanism.  Proceedings of the 2005 CCToMM Symposium of Mechanisms, Machines, and Mechatronics (2005 CCToMM M3), Montréal, Québec, Canada.
  16. Marc Arsenault and Clément M. Gosselin (2004).  Development and analysis of a planar 1-DoF tensegrity mechanism.  Proceedings of the 2004 CSME Forum, London, Ontario, Canada.
  17. Marc Arsenault and Roger Boudreau (2004).  The synthesis of a general planar parallel manipulator with prismatic joints for optimal stiffness.  Proceedings of the 11th World Congress in Mechanism and Machine Science (IFToMM), Tianjin, China.
  18. Marc Arsenault and Roger Boudreau (2003).  The synthesis of three-degree-of freedom planar parallel manipulators with revolute joints (3-RRR) for an optimal singularity free workspace.  Proceedings of the 2003 CCToMM Symposium of Mechanisms, Machines, and Mechatronics (2003 CCToMM M3), Montréal, Québec, Canada.